Initial commit

This commit is contained in:
2022-11-22 20:51:20 +03:00
parent fbe67387fb
commit 5408430646
10 changed files with 4604 additions and 0 deletions

81
lab4/1.yml Normal file
View File

@@ -0,0 +1,81 @@
%YAML:1.0
---
opencv_ml_svm:
format: 3
svmType: C_SVC
kernel:
type: RBF
gamma: 1.
C: 1.
term_criteria: { epsilon:1.1920928955078125e-07, iterations:1000 }
var_count: 1
class_count: 2
class_labels: !!opencv-matrix
rows: 2
cols: 1
dt: i
data: [ -1, 1 ]
sv_total: 50
support_vectors:
- [ 0. ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 0. ]
- [ 2.80259693e-45 ]
- [ 0. ]
- [ 2.80259693e-45 ]
- [ 2.80259693e-45 ]
- [ 2.80259693e-45 ]
- [ 2.80259693e-45 ]
- [ 4.20389539e-45 ]
- [ 2.80259693e-45 ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 2.80259693e-45 ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 2.80259693e-45 ]
- [ 2.80259693e-45 ]
- [ 1.40129846e-45 ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 0. ]
- [ 2.80259693e-45 ]
- [ 0. ]
- [ 1.40129846e-45 ]
- [ 2.80259693e-45 ]
- [ 1.40129846e-45 ]
- [ 0. ]
decision_functions:
-
sv_count: 50
rho: 0.
alpha: [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., -1., -1., -1.,
-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1., -1., -1., -1., -1., -1., -1. ]
index: [ 12, 15, 2, 16, 4, 5, 21, 24, 8, 31, 10, 11, 23, 13, 14,
29, 30, 32, 33, 40, 42, 44, 46, 47, 48, 19, 26, 27, 28, 1,
3, 25, 0, 7, 34, 35, 36, 37, 38, 39, 9, 41, 6, 43, 17, 45,
18, 20, 22, 49 ]

214
lab4/lab4.py Normal file
View File

@@ -0,0 +1,214 @@
#import numpy as np
#import cv2
#img = cv2.imread("D:\MACH\LAB_4\crocodile\image_0001.jpg")
#gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#sift = cv2.SIFT_create()
#kp = sift.detect(gray,None)
#img=cv2.drawKeypoints(gray,kp,img)
#cv2.imshow("R",img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
import sys
import cv2
import numpy as np
import random
import math
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import (QWidget, QApplication, QLabel, QVBoxLayout, QHBoxLayout, QPushButton,
QFileDialog,QComboBox,QMessageBox,QTextBrowser)
from PyQt5.QtCore import Qt
class Example(QWidget):
def __init__(self):
super().__init__()
self.image = None
self.textbrowser = QTextBrowser()
self.initUI()
def initUI(self):
self.btn_open = QPushButton('Изображения folder1')
self.btn_open.clicked.connect(self.openImages1)
self.btn_open1 = QPushButton('Изображения folder2')
self.btn_open1.clicked.connect(self.openImages2)
self.btn_ = QPushButton('Обучить и создать матрицы')
self.btn_.clicked.connect(self.matrix_and_train)
self.btn1 = QPushButton('Детектировать тестовые изображения')
self.btn1.clicked.connect(self.detect_image)
self.btn2 = QPushButton('Сформировать лес и натренировать полученную модель')
self.btn2.clicked.connect(self.form_les_and_train)
self.btn_.setVisible(False)
self.btn1.setVisible(False)
self.btn2.setVisible(False)
top_bar = QHBoxLayout()
top_bar.addWidget(self.btn_open)
top_bar.addWidget(self.btn_open1)
top_bar.addWidget(self.btn_)
top_bar.addWidget(self.btn1)
top_bar.addWidget(self.btn2)
root = QVBoxLayout(self)
root.addLayout(top_bar)
root.addWidget(self.textbrowser)
self.spisok=list()
self.spisok2=list()
self.spisok3=list()
self.train=list()
self.matrix=list()
self.resize(540, 574)
self.setWindowTitle('ST_4')
self.show()
def openImages1(self):
filenames1 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
lk=filenames1[0]
self.erroropened(lk,"1")
self.mass(lk,1)
lk.clear()
def openImages2(self):
filenames2 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
lk=filenames2[0]
self.erroropened(lk,"2")
self.mass(lk,2)
lk.clear()
def erroropened(self,s,s1):
if len(s)!=0:
q=QMessageBox.information(self,"Информация","Изображения из "+s1+" папки получены!")
else:
q=QMessageBox.information(self,"Информация","Вы не выбрали изображения!")
def mass(self,p,s1):
if s1==1:
self.spisok3.clear()
for v in range(len(p)):
self.spisok.append(str(p[v]))
self.spisok3.append(str(p[v])+"SKT")
self.appendos("Тестовый набор картинок",self.spisok)
if s1==2:
for v in range(len(p)):
self.spisok2.append(str(p[v]))
self.spisok3.append(str(p[v])+"NO")
self.spisok3=list(set(self.spisok3))
self.appendos("Набор картинок для тренировки",self.spisok2)
self.btn_open.setVisible(False)
self.btn_open1.setVisible(False)
self.btn_.setVisible(True)
q=QMessageBox.information(self,"Информация","Количество изображений тестовой категории: "+str(len(self.spisok))+"\nКоличество изображений основной категории: "+str(len(self.spisok2))+"\nОбщее количество изображений: "+str(int(len(self.spisok)+int(len(self.spisok2)))))
def matrix_and_train(self):
for v in range(len(self.spisok3)):
s=str(self.spisok3[v])
if s.endswith("SKT"):
self.train.append(round(float(0.5),1))
self.matrix.append(round(float(1.0),1))
if s.endswith("NO"):
q=round(float(random.uniform(1.0,3.0)),1)
self.train.append(q)
self.matrix.append(round(float(-1.0),1))
self.appendos("Ваши тренировочные данные",self.train)
self.appendos("Ваша матрица",self.matrix)
train=np.array([self.train],dtype=int)
labels = np.array(self.matrix,dtype=int)
self.svm = cv2.ml.SVM_create()
self.svm.train(train, cv2.ml.COL_SAMPLE, labels)
self.svm.save("1.yml")
self.textbrowser.append("Модель сохранена!")
close = QMessageBox.question(self,"Поздравляем!","Ваша модель натренирована!",QMessageBox.Yes | QMessageBox.No)
if close == QMessageBox.Yes:
pass
self.btn_.setVisible(False)
self.btn1.setVisible(True)
def appendos(self,s1,s2):
self.textbrowser.append(s1)
for v in range(len(s2)):
self.textbrowser.append(str(s2[v]))
def detect_image(self):
self.model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
self.spisok3.clear()
for v in range(len(self.spisok)):
lkst=list()
img = cv2.imread(str(self.spisok[v]))
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp = sift.detect(gray,None)
for keyPoint in kp:
#self.spisok3.append(keyPoint.pt[0])
#self.spisok3.append(keyPoint.pt[1])
#print(keyPoint.pt[0])
#print(keyPoint.pt[1])
lkst.append(keyPoint.pt[0])
lkst.append(keyPoint.pt[1])
#self.spisok3.append(lkst)
train=np.array([lkst],dtype=int)
labels = np.array([lkst],dtype=int)
self.model.fit(train, labels)
self.textbrowser.append("Модель натренирована на рисунке "+str(v))
#print(len(self.spisok3))
self.textbrowser.append("Выявлены контурные точки на тестовых изображениях!")
#s = keyPoint.size
#print(x,y,s)
self.btn1.setVisible(False)
self.btn2.setVisible(True)
def form_les_and_train(self):
#print(self.spisok3)
for v in range(len(self.spisok2)):
lk=list()
img = cv2.imread(str(self.spisok2[v]))
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp = sift.detect(gray,None)
for keyPoint in kp:
#self.spisok3.append(keyPoint.pt[0])
#self.spisok3.append(keyPoint.pt[1])
#print(keyPoint.pt[0])
#print(keyPoint.pt[1])
lkst.append(keyPoint.pt[0])
lkst.append(keyPoint.pt[1])
train =np.array([lkst],dtype=int)
self.model.predict(train)
#self.model.
print("RED")
#train = np.array([self.spisok3],dtype=int)
#labels = np.array([self.spisok3],dtype=int)
#model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
#model.fit(train, labels)
#tree = DecisionTreeClassifier()
#tree.fit(self.spisok3, self.spisok3)
#accuracy = accuracy_score(len(self.spisok3), len(self.spisok3))
#print('Model Accuracy:',accuracy)
def closeEvent(self, event):
close = QMessageBox.question(self,"Выход","Вы хотите завершить работу?",QMessageBox.Yes | QMessageBox.No)
if close == QMessageBox.Yes:
event.accept()
else:
event.ignore()
if __name__ == '__main__':
app = QApplication(sys.argv)
win = Example()
sys.exit(app.exec_())

BIN
lab4/sift_keypoints.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB