refactoring

This commit is contained in:
vlad 2022-11-24 10:52:38 +03:00
parent c567ba6273
commit c6e36a2f72
4 changed files with 352 additions and 367 deletions

View File

@ -1,161 +1,162 @@
import os
import sys
import traceback
import cv2
import numpy as np
from matplotlib import pyplot as plt
def menu():
print("Выберите пункт меню:\n1.Linear filter\n2.Blur\n3.Median blur\n4.GaussianBlur\n5.Erode")
print("6.Dilate\n7.MORPH_OPERATIONS\n8.Sobel\n9.Laplacian\n10.Canny\n11.CalcHist\n12.EqualizeHist")
print("13.Save\n14.Add Figure\n15.Del Figure\n16.Exit")
SOURCE_IMAGE = "test.jpg"
def filter_linear(image):
kernel = np.array([[-0.1, 0.2, -0.1], [0.2, 3.0, 0.2], [-0.1, 0.2, -0.1]])
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.filter2D(image.copy(), -1, kernel))
def filter_blur(image):
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.blur(image.copy(), (5, 5)))
def filter_median_blur(image):
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.medianBlur(image.copy(), 5))
def filter_gauss_blur(image):
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.GaussianBlur(image.copy(), (9, 9), cv2.BORDER_DEFAULT))
def filter_erode(image):
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.erode(image.copy(), np.ones((11, 11))))
def filter_dilate(image):
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.dilate(image.copy(), np.ones((11, 11))))
def filter_morph(image):
# TODO переписать
image2 = image.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
cv2.imshow("Image_load", image)
kernel = np.ones((6, 6), np.uint8)
image3 = cv2.morphologyEx(image3, cv2.MORPH_OPEN, kernel, iterations=1)
cv2.imshow("MORPH_OPEN", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_CLOSE, kernel, iterations=1)
cv2.imshow("MORPH_CLOSE", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_GRADIENT, kernel, iterations=1)
cv2.imshow("MORPH_GRADIENT", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_TOPHAT, kernel, iterations=1)
cv2.imshow("MORPH_TOPHAT", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_BLACKHAT, kernel, iterations=1)
cv2.imshow("MORPH_BLACKHAT", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
def filter_sobel(image):
image2 = image.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.GaussianBlur(image3, (3, 3), 0)
im3 = cv2.Sobel(image3, cv2.CV_64F, 1, 0, ksize=5)
im4 = cv2.Sobel(image3, cv2.CV_64F, 0, 1, ksize=5)
im5 = cv2.Sobel(image3, cv2.CV_8UC1, 0, 1, ksize=5)
cv2.imshow("Image_load", image)
cv2.imshow("Result_Image_X", im3) # x
cv2.imshow("Result_Image_Y", im4) # y
cv2.imshow("Result_Gradient", im5) # gradient
def filter_laplacian(image):
image2 = image.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
image3 = cv2.GaussianBlur(image3, (3, 3), 0)
im3 = cv2.Laplacian(image3, cv2.CV_64F)
cv2.imshow("Image_load", image)
cv2.imshow("Result_Image", im3)
def filter_canny(image):
image2 = image.copy()
image3 = cv2.blur(image2, (5, 5))
image3 = cv2.Canny(image3, 100, 100)
cv2.imshow("Image_load", image)
cv2.imshow("Result_Image", image3)
def filter_calc_hist(image):
image2 = image.copy()
color = ('b', 'g', 'r')
cv2.imshow("Image_load", image)
for i, col in enumerate(color):
histr = cv2.calcHist([image2], [i], None, [256], [0, 256])
plt.plot(histr, color=col)
plt.xlim([0, 256])
plt.show()
plt.close()
def filter_equalize_hist(image):
cv2.imshow("Исходное изображение", image)
cv2.imshow("Результат", cv2.equalizeHist(cv2.cvtColor(image.copy(), cv2.COLOR_RGB2GRAY)))
functions_list = {
"lf": {"func": filter_linear, "help": "Linear filter"},
"bl": {"func": filter_blur, "help": "Blur"},
"mb": {"func": filter_median_blur, "help": "Median blur"},
"gb": {"func": filter_gauss_blur, "help": "GaussianBlur"},
"er": {"func": filter_erode, "help": "Erode"},
"di": {"func": filter_dilate, "help": "Dilate"},
"mo": {"func": filter_morph, "help": "MORPH_OPERATIONS"},
"so": {"func": filter_sobel, "help": "Sobel"},
"la": {"func": filter_laplacian, "help": "Laplacian"},
"ca": {"func": filter_canny, "help": "Canny"},
"cl": {"func": filter_calc_hist, "help": "CalcHist"},
"eh": {"func": filter_equalize_hist, "help": "EqualizeHist"},
"q": {"func": lambda image: sys.exit(0), "help": "Exit"},
}
def print_help():
print("Доступные функции:")
for k in functions_list:
print(f" {k} - {functions_list[k]['help']}")
def main():
image1 = cv2.imread("D:\\MACH\\LAB_2\\image0.jpg")
image2 = image1.copy()
im = image1.copy()
image1 = cv2.imread(SOURCE_IMAGE)
while True:
menu()
try:
s = int(input())
if s == 1:
image2 = image1.copy()
kernel = np.array([[-0.1, 0.2, -0.1], [0.2, 3.0, 0.2], [-0.1, 0.2, -0.1]])
image2 = cv2.filter2D(image2, -1, kernel)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 2:
image2 = image1.copy()
image2 = cv2.blur(image2, (5, 5))
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 3:
image2 = image1.copy()
image2 = cv2.medianBlur(image2, 5)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 4:
image2 = image1.copy()
image2 = cv2.GaussianBlur(image2, (9, 9), cv2.BORDER_DEFAULT)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 5:
image2 = image1.copy()
image2 = cv2.erode(image2, np.ones((11, 11)))
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 6:
image2 = image1.copy()
image2 = cv2.dilate(image2, np.ones((11, 11)))
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 7:
image2 = image1.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
cv2.imshow("Image_load", image1)
kernel = np.ones((6, 6), np.uint8)
image3 = cv2.morphologyEx(image3, cv2.MORPH_OPEN, kernel, iterations=1)
cv2.imshow("MORPH_OPEN", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_CLOSE, kernel, iterations=1)
cv2.imshow("MORPH_CLOSE", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_GRADIENT, kernel, iterations=1)
cv2.imshow("MORPH_GRADIENT", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_TOPHAT, kernel, iterations=1)
cv2.imshow("MORPH_TOPHAT", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.morphologyEx(image3, cv2.MORPH_BLACKHAT, kernel, iterations=1)
cv2.imshow("MORPH_BLACKHAT", image3)
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
cv2.waitKey(0)
if s == 8:
image2 = image1.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image3 = cv2.GaussianBlur(image3, (3, 3), 0)
im3 = cv2.Sobel(image3, cv2.CV_64F, 1, 0, ksize=5)
im4 = cv2.Sobel(image3, cv2.CV_64F, 0, 1, ksize=5)
im5 = cv2.Sobel(image3, cv2.CV_8UC1, 0, 1, ksize=5)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image_X", im3) # x
cv2.imshow("Result_Image_Y", im4) # y
cv2.imshow("Result_Gradient", im5) # gradient
cv2.waitKey(0)
if s == 9:
image2 = image1.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
image3 = cv2.GaussianBlur(image3, (3, 3), 0)
im3 = cv2.Laplacian(image3, cv2.CV_64F)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", im3) # x
cv2.waitKey(0)
if s == 10:
image2 = image1.copy()
image3 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
image3 = cv2.blur(image2, (5, 5))
image3 = cv2.Canny(image3, 100, 100)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image3) # x
cv2.waitKey(0)
if s == 11:
image2 = image1.copy()
color = ('b', 'g', 'r')
cv2.imshow("Image_load", image1)
for i, col in enumerate(color):
histr = cv2.calcHist([image2], [i], None, [256], [0, 256])
plt.plot(histr, color=col)
plt.xlim([0, 256])
plt.show()
plt.close()
cv2.waitKey(0)
if s == 12:
image2 = image1.copy()
image2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
image2 = cv2.equalizeHist(image2)
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.waitKey(0)
if s == 13:
cv2.imshow("Image_load", image1)
cv2.imshow("Result_Image", image2)
cv2.imwrite("D:\\im1.jpg", image1)
cv2.imwrite("D:\\im2.jpg", image2)
cv2.waitKey(0)
if s == 14:
image2 = image1.copy()
cv2.imshow("Image_load", image1)
image2 = cv2.line(image2, (15, 15), (270, 270), (76, 187, 23), 10) # линия
image2 = cv2.rectangle(image2, (20, 20), (100, 100), (0, 0, 255), 10) # нарисуем четырехугольник
image2 = cv2.circle(image2, (100, 100), 40, (0, 255, 0), 10) # нарисуем круг
cv2.imshow("Result_Image", image2)
image1 = image2
cv2.waitKey(0)
if s == 15:
cv2.imwrite("1.jpg", im)
cv2.imwrite("2.jpg", image1)
img = cv2.imread("1.jpg")
mask = cv2.imread("2.jpg", 0)
res = cv2.bitwise_and(img, img, mask=mask)
image2 = res.copy()
image1 = res.copy()
cv2.imshow("Result_Image", res)
cmd = input(">> ")
if cmd == "":
continue
elif cmd == "?":
print_help()
else:
if cmd in functions_list:
try:
functions_list[cmd]["func"](image=image1.copy())
cv2.waitKey(0)
cv2.destroyAllWindows()
except Exception:
print("Произошла ошибка при выполнении функции")
traceback.print_exc()
else:
print("Функция не найдена! введите '?' для получения справки")
cv2.waitKey(0)
os.remove("1.jpg")
os.remove("2.jpg")
if s == 16:
cv2.destroyAllWindows()
sys.exit(0)
except ValueError:
print("Неверный пункт меню!!!! Выберите другое!")
except Exception:
traceback.print_exc()
if __name__ == "__main__":

BIN
lab2_1/test.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

View File

@ -1,13 +1,17 @@
import sys
import cv2
import numpy
import numpy
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout, QHBoxLayout, QPushButton, QFileDialog,QComboBox,QMessageBox
from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout, QHBoxLayout, QPushButton, QFileDialog, \
QComboBox, QMessageBox
from PyQt5.QtCore import Qt
from matplotlib import pyplot as plt
class Example(QWidget):
def __init__(self):
super().__init__()
self.image2 = None
self.image = None
self.label = QLabel()
self.initUI()
@ -22,11 +26,10 @@ class Example(QWidget):
btn_procesar = QPushButton('Сохранить изображение')
btn_procesar.clicked.connect(self.saveImage)
f=open("Operate.txt","r")
attr=f.read().splitlines()
f = open("Operate.txt", "r")
attr = f.read().splitlines()
f.close()
self.oper=QComboBox()
self.oper = QComboBox()
self.oper.addItems(attr)
self.oper.currentIndexChanged.connect(self.combobox)
@ -43,25 +46,21 @@ class Example(QWidget):
self.show()
def openImage(self):
self.filename, _ = QFileDialog.getOpenFileName(None, 'Buscar Imagen', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
self.filename, _ = QFileDialog.getOpenFileName(None, 'Buscar Imagen', '.',
'Image Files (*.png *.jpg *.jpeg *.bmp)')
if self.filename:
with open(self.filename, "rb") as file:
data = numpy.array(bytearray(file.read()))
self.image = cv2.imdecode(data, cv2.IMREAD_UNCHANGED)
self.image = cv2.imdecode(data, cv2.IMREAD_UNCHANGED)
self.mostrarImagen(self.image)
self.image2=self.image
self.image2 = self.image
def saveImage(self):
filename = QFileDialog.getSaveFileName(self,"QFileDialog.getSaveFileName()","","Image Files (*.jpg)")
img=self.image2
cv2.imwrite(filename[0],img)
filename = QFileDialog.getSaveFileName(self, "QFileDialog.getSaveFileName()", "", "Image Files (*.jpg)")
img = self.image2
cv2.imwrite(filename[0], img)
def mostrarImagen(self,s):
def mostrarImagen(self, s):
size = s.shape
step = s.size / size[0]
qformat = QImage.Format_Indexed8
@ -74,198 +73,193 @@ class Example(QWidget):
img = img.rgbSwapped()
self.label.setPixmap(QPixmap.fromImage(img))
self.resize(self.label.pixmap().size())
def combobox(self, index):
if index==0:
def combobox(self, index):
if index == 0:
self.i0()
if index==1:
if index == 1:
self.i1()
if index==2:
if index == 2:
self.i2()
if index==3:
if index == 3:
self.i3()
if index==4:
if index == 4:
self.i4()
if index==5:
if index == 5:
self.i5()
if index==6:
if index == 6:
self.i6()
if index==7:
if index == 7:
self.i7()
if index==8:
if index == 8:
self.i8()
if index==9:
if index == 9:
self.i9()
if index==10:
if index == 10:
self.i10()
if index==11:
if index == 11:
self.i11()
if index==12:
if index == 12:
self.i12()
if index==13:
if index == 13:
self.i13()
if index==14:
if index == 14:
self.i14()
if index==15:
if index == 15:
self.i15()
if index==16:
if index == 16:
self.i16()
if index==17:
if index == 17:
self.i17()
if index==18:
if index == 18:
self.i18()
if index==19:
if index == 19:
self.i19()
if index==20:
if index == 20:
self.i20()
def i0(self):
self.image2=self.image
self.image2 = self.image
self.mostrarImagen(self.image)
def i1(self):
self.image2=self.image
kernel = numpy.array([[-0.1,0.2,-0.1],[0.2,3.0,0.2],[-0.1,0.2,-0.1]])
self.image2=cv2.filter2D(self.image2,-1,kernel)
self.image2 = self.image
kernel = numpy.array([[-0.1, 0.2, -0.1], [0.2, 3.0, 0.2], [-0.1, 0.2, -0.1]])
self.image2 = cv2.filter2D(self.image2, -1, kernel)
self.mostrarImagen(self.image2)
def i2(self):
self.image2=self.image
self.image2 = cv2.blur(self.image2,(5,5))
self.image2 = self.image
self.image2 = cv2.blur(self.image2, (5, 5))
self.mostrarImagen(self.image2)
def i3(self):
self.image2=self.image
self.image2 = cv2.medianBlur(self.image2,5)
self.image2 = self.image
self.image2 = cv2.medianBlur(self.image2, 5)
self.mostrarImagen(self.image2)
def i4(self):
self.image2=self.image
self.image2 = cv2.GaussianBlur(self.image2, (9,9),cv2.BORDER_DEFAULT)
self.image2 = self.image
self.image2 = cv2.GaussianBlur(self.image2, (9, 9), cv2.BORDER_DEFAULT)
self.mostrarImagen(self.image2)
def i5(self):
self.image2=self.image
self.image2 = self.image
self.image2 = cv2.erode(self.image2, numpy.ones((11, 11)))
self.mostrarImagen(self.image2)
def i6(self):
self.image2=self.image
self.image2 = self.image
self.image2 = cv2.dilate(self.image2, numpy.ones((11, 11)))
self.mostrarImagen(self.image2)
def i7(self):
self.image2=self.image
kernel = numpy.ones((6,6),numpy.uint8)
self.image2=cv2.morphologyEx(self.image2, cv2.MORPH_OPEN, kernel,iterations = 1)
self.image2 = self.image
kernel = numpy.ones((6, 6), numpy.uint8)
self.image2 = cv2.morphologyEx(self.image2, cv2.MORPH_OPEN, kernel, iterations=1)
self.mostrarImagen(self.image2)
def i8(self):
self.image2=self.image
kernel = numpy.ones((6,6),numpy.uint8)
self.image2=cv2.morphologyEx(self.image2, cv2.MORPH_CLOSE, kernel,iterations = 1)
self.image2 = self.image
kernel = numpy.ones((6, 6), numpy.uint8)
self.image2 = cv2.morphologyEx(self.image2, cv2.MORPH_CLOSE, kernel, iterations=1)
self.mostrarImagen(self.image2)
def i9(self):
self.image2=self.image
kernel = numpy.ones((6,6),numpy.uint8)
self.image2=cv2.morphologyEx(self.image2, cv2.MORPH_GRADIENT, kernel,iterations = 1)
self.image2 = self.image
kernel = numpy.ones((6, 6), numpy.uint8)
self.image2 = cv2.morphologyEx(self.image2, cv2.MORPH_GRADIENT, kernel, iterations=1)
self.mostrarImagen(self.image2)
def i10(self):
self.image2=self.image
kernel = numpy.ones((6,6),numpy.uint8)
self.image2=cv2.morphologyEx(self.image2, cv2.MORPH_TOPHAT, kernel,iterations = 1)
self.image2 = self.image
kernel = numpy.ones((6, 6), numpy.uint8)
self.image2 = cv2.morphologyEx(self.image2, cv2.MORPH_TOPHAT, kernel, iterations=1)
self.mostrarImagen(self.image2)
def i11(self):
self.image2=self.image
kernel = numpy.ones((6,6),numpy.uint8)
self.image2=cv2.morphologyEx(self.image2, cv2.MORPH_BLACKHAT, kernel,iterations = 1)
self.image2 = self.image
kernel = numpy.ones((6, 6), numpy.uint8)
self.image2 = cv2.morphologyEx(self.image2, cv2.MORPH_BLACKHAT, kernel, iterations=1)
self.mostrarImagen(self.image2)
def i12(self):
self.image2=self.image
self.image2 = cv2.cvtColor(self.image2,cv2.COLOR_BGR2GRAY)
self.image2 = cv2.GaussianBlur(self.image2,(3,3),0)
self.image2 = cv2.Sobel(self.image2,cv2.CV_64F,1,0,ksize=5)
self.image2 = self.image
self.image2 = cv2.cvtColor(self.image2, cv2.COLOR_BGR2GRAY)
self.image2 = cv2.GaussianBlur(self.image2, (3, 3), 0)
self.image2 = cv2.Sobel(self.image2, cv2.CV_64F, 1, 0, ksize=5)
self.mostrarImagen(self.image2)
def i13(self):
self.image2=self.image
self.image2 = cv2.cvtColor(self.image2,cv2.COLOR_BGR2GRAY)
self.image2 = cv2.GaussianBlur(self.image2,(3,3),0)
self.image2 = cv2.Sobel(self.image2,cv2.CV_64F,0,1,ksize=5)
self.image2 = self.image
self.image2 = cv2.cvtColor(self.image2, cv2.COLOR_BGR2GRAY)
self.image2 = cv2.GaussianBlur(self.image2, (3, 3), 0)
self.image2 = cv2.Sobel(self.image2, cv2.CV_64F, 0, 1, ksize=5)
self.mostrarImagen(self.image2)
def i14(self):
self.image2=self.image
self.image2 = cv2.cvtColor(self.image2,cv2.COLOR_BGR2GRAY)
self.image2 = cv2.GaussianBlur(self.image2,(3,3),0)
self.image2 = cv2.Sobel(self.image2,cv2.CV_8UC1,0,1,ksize=5)
self.image2 = self.image
self.image2 = cv2.cvtColor(self.image2, cv2.COLOR_BGR2GRAY)
self.image2 = cv2.GaussianBlur(self.image2, (3, 3), 0)
self.image2 = cv2.Sobel(self.image2, cv2.CV_8UC1, 0, 1, ksize=5)
self.mostrarImagen(self.image2)
def i15(self):
self.image2=self.image
self.image2 = cv2.cvtColor(self.image2,cv2.COLOR_RGB2GRAY)
self.image2 = cv2.GaussianBlur(self.image2,(3,3),0)
self.image2 = cv2.Laplacian(self.image2,cv2.CV_64F)
self.image2 = self.image
self.image2 = cv2.cvtColor(self.image2, cv2.COLOR_RGB2GRAY)
self.image2 = cv2.GaussianBlur(self.image2, (3, 3), 0)
self.image2 = cv2.Laplacian(self.image2, cv2.CV_64F)
self.mostrarImagen(self.image2)
def i16(self):
self.image2=self.image
self.image2 = cv2.cvtColor(self.image2,cv2.COLOR_RGB2GRAY)
self.image2 = cv2.blur(self.image2,(5,5))
self.image2 = self.image
self.image2 = cv2.cvtColor(self.image2, cv2.COLOR_RGB2GRAY)
self.image2 = cv2.blur(self.image2, (5, 5))
self.image2 = cv2.Canny(self.image2, 100, 100)
self.mostrarImagen(self.image2)
def i17(self):
self.image2=self.image
color = ('b','g','r')
for i,col in enumerate(color):
histr = cv2.calcHist([self.image2],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])
self.image2 = self.image
color = ('b', 'g', 'r')
for i, col in enumerate(color):
histr = cv2.calcHist([self.image2], [i], None, [256], [0, 256])
plt.plot(histr, color=col)
plt.xlim([0, 256])
plt.show()
def i18(self):
self.image2=self.image
self.image2 = cv2.cvtColor(self.image2,cv2.COLOR_RGB2GRAY)
self.image2 = self.image
self.image2 = cv2.cvtColor(self.image2, cv2.COLOR_RGB2GRAY)
self.image2 = cv2.equalizeHist(self.image2)
self.mostrarImagen(self.image2)
def i19(self):
self.image2=self.image
self.image2 = cv2.line(self.image2,(15,15),(270,270),(76,187,23),10)#линия
self.image2 = cv2.rectangle(self.image2,(20,20),(100,100),(0,0,255),10)#нарисуем четырехугольник
self.image2 = cv2.circle(self.image2,(100,100),40,(0,255,0),10)#нарисуем круг
self.image=self.image2
self.image2 = self.image
self.image2 = cv2.line(self.image2, (15, 15), (270, 270), (76, 187, 23), 10) # линия
self.image2 = cv2.rectangle(self.image2, (20, 20), (100, 100), (0, 0, 255), 10) # нарисуем четырехугольник
self.image2 = cv2.circle(self.image2, (100, 100), 40, (0, 255, 0), 10) # нарисуем круг
self.image = self.image2
self.mostrarImagen(self.image2)
def i20(self):
if self.filename:
with open(self.filename, "rb") as file:
data = numpy.array(bytearray(file.read()))
self.image = cv2.imdecode(data, cv2.IMREAD_UNCHANGED)
self.image = cv2.imdecode(data, cv2.IMREAD_UNCHANGED)
self.mostrarImagen(self.image)
self.mostrarImagen(self.image)
self.image2=self.image
self.image2 = self.image
def closeEvent(self, event):
close = QMessageBox.question(self,"Выход","Вы хотите завершить работу?",QMessageBox.Yes | QMessageBox.No)
close = QMessageBox.question(self, "Выход", "Вы хотите завершить работу?", QMessageBox.Yes | QMessageBox.No)
if close == QMessageBox.Yes:
event.accept()
else:
event.ignore()
if __name__ == '__main__':
app = QApplication(sys.argv)
win = Example()
sys.exit(app.exec_())
sys.exit(app.exec_())

View File

@ -1,32 +1,22 @@
#import numpy as np
#import cv2
#img = cv2.imread("D:\MACH\LAB_4\crocodile\image_0001.jpg")
#gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#sift = cv2.SIFT_create()
#kp = sift.detect(gray,None)
#img=cv2.drawKeypoints(gray,kp,img)
#cv2.imshow("R",img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
import random
import sys
import cv2
import numpy as np
import random
import math
from PyQt5.QtCore import Qt
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import (QWidget, QApplication, QLabel, QVBoxLayout, QHBoxLayout, QPushButton,
QFileDialog,QComboBox,QMessageBox,QTextBrowser)
from PyQt5.QtCore import Qt
class Example(QWidget):
def __init__(self):
super().__init__()
self.image = None
self.textbrowser = QTextBrowser()
self.initUI()
def initUI(self):
self.btn_open = QPushButton('Изображения folder1')
self.btn_open.clicked.connect(self.openImages1)
@ -34,11 +24,9 @@ class Example(QWidget):
self.btn_open1 = QPushButton('Изображения folder2')
self.btn_open1.clicked.connect(self.openImages2)
self.btn_ = QPushButton('Обучить и создать матрицы')
self.btn_.clicked.connect(self.matrix_and_train)
self.btn1 = QPushButton('Детектировать тестовые изображения')
self.btn1.clicked.connect(self.detect_image)
@ -49,7 +37,6 @@ class Example(QWidget):
self.btn1.setVisible(False)
self.btn2.setVisible(False)
top_bar = QHBoxLayout()
top_bar.addWidget(self.btn_open)
top_bar.addWidget(self.btn_open1)
@ -59,156 +46,159 @@ class Example(QWidget):
root = QVBoxLayout(self)
root.addLayout(top_bar)
root.addWidget(self.textbrowser)
self.spisok=list()
self.spisok2=list()
self.spisok3=list()
self.spisok = list()
self.spisok2 = list()
self.spisok3 = list()
self.train=list()
self.matrix=list()
self.train = list()
self.matrix = list()
self.resize(540, 574)
self.setWindowTitle('ST_4')
self.show()
def openImages1(self):
filenames1 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
lk=filenames1[0]
self.erroropened(lk,"1")
self.mass(lk,1)
filenames1 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.',
'Image Files (*.png *.jpg *.jpeg *.bmp)')
lk = filenames1[0]
self.erroropened(lk, "1")
self.mass(lk, 1)
lk.clear()
def openImages2(self):
filenames2 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
lk=filenames2[0]
self.erroropened(lk,"2")
self.mass(lk,2)
filenames2 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.',
'Image Files (*.png *.jpg *.jpeg *.bmp)')
lk = filenames2[0]
self.erroropened(lk, "2")
self.mass(lk, 2)
lk.clear()
def erroropened(self,s,s1):
if len(s)!=0:
q=QMessageBox.information(self,"Информация","Изображения из "+s1+" папки получены!")
def erroropened(self, s, s1):
if len(s) != 0:
q = QMessageBox.information(self, "Информация", "Изображения из " + s1 + " папки получены!")
else:
q=QMessageBox.information(self,"Информация","Вы не выбрали изображения!")
q = QMessageBox.information(self, "Информация", "Вы не выбрали изображения!")
def mass(self,p,s1):
if s1==1:
def mass(self, p, s1):
if s1 == 1:
self.spisok3.clear()
for v in range(len(p)):
self.spisok.append(str(p[v]))
self.spisok3.append(str(p[v])+"SKT")
self.appendos("Тестовый набор картинок",self.spisok)
if s1==2:
self.spisok3.append(str(p[v]) + "SKT")
self.appendos("Тестовый набор картинок", self.spisok)
if s1 == 2:
for v in range(len(p)):
self.spisok2.append(str(p[v]))
self.spisok3.append(str(p[v])+"NO")
self.spisok3=list(set(self.spisok3))
self.appendos("Набор картинок для тренировки",self.spisok2)
self.spisok3.append(str(p[v]) + "NO")
self.spisok3 = list(set(self.spisok3))
self.appendos("Набор картинок для тренировки", self.spisok2)
self.btn_open.setVisible(False)
self.btn_open1.setVisible(False)
self.btn_.setVisible(True)
q=QMessageBox.information(self,"Информация","Количество изображений тестовой категории: "+str(len(self.spisok))+"\nКоличество изображений основной категории: "+str(len(self.spisok2))+"\nОбщее количество изображений: "+str(int(len(self.spisok)+int(len(self.spisok2)))))
q = QMessageBox.information(self, "Информация", "Количество изображений тестовой категории: " + str(
len(self.spisok)) + "\nКоличество изображений основной категории: " + str(
len(self.spisok2)) + "\nОбщее количество изображений: " + str(
int(len(self.spisok) + int(len(self.spisok2)))))
def matrix_and_train(self):
for v in range(len(self.spisok3)):
s=str(self.spisok3[v])
s = str(self.spisok3[v])
if s.endswith("SKT"):
self.train.append(round(float(0.5),1))
self.matrix.append(round(float(1.0),1))
self.train.append(round(float(0.5), 1))
self.matrix.append(round(float(1.0), 1))
if s.endswith("NO"):
q=round(float(random.uniform(1.0,3.0)),1)
q = round(float(random.uniform(1.0, 3.0)), 1)
self.train.append(q)
self.matrix.append(round(float(-1.0),1))
self.appendos("Ваши тренировочные данные",self.train)
self.appendos("Ваша матрица",self.matrix)
train=np.array([self.train],dtype=int)
labels = np.array(self.matrix,dtype=int)
self.matrix.append(round(float(-1.0), 1))
self.appendos("Ваши тренировочные данные", self.train)
self.appendos("Ваша матрица", self.matrix)
train = np.array([self.train], dtype=int)
labels = np.array(self.matrix, dtype=int)
self.svm = cv2.ml.SVM_create()
self.svm.train(train, cv2.ml.COL_SAMPLE, labels)
self.svm.save("1.yml")
self.textbrowser.append("Модель сохранена!")
close = QMessageBox.question(self,"Поздравляем!","Ваша модель натренирована!",QMessageBox.Yes | QMessageBox.No)
close = QMessageBox.question(self, "Поздравляем!", "Ваша модель натренирована!",
QMessageBox.Yes | QMessageBox.No)
if close == QMessageBox.Yes:
pass
self.btn_.setVisible(False)
self.btn1.setVisible(True)
def appendos(self,s1,s2):
def appendos(self, s1, s2):
self.textbrowser.append(s1)
for v in range(len(s2)):
self.textbrowser.append(str(s2[v]))
def detect_image(self):
self.model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
self.model = RandomForestClassifier(n_estimators=100, bootstrap=True, max_features='sqrt')
self.spisok3.clear()
for v in range(len(self.spisok)):
lkst=list()
lkst = list()
img = cv2.imread(str(self.spisok[v]))
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp = sift.detect(gray,None)
kp = sift.detect(gray, None)
for keyPoint in kp:
#self.spisok3.append(keyPoint.pt[0])
#self.spisok3.append(keyPoint.pt[1])
#print(keyPoint.pt[0])
#print(keyPoint.pt[1])
# self.spisok3.append(keyPoint.pt[0])
# self.spisok3.append(keyPoint.pt[1])
# print(keyPoint.pt[0])
# print(keyPoint.pt[1])
lkst.append(keyPoint.pt[0])
lkst.append(keyPoint.pt[1])
#self.spisok3.append(lkst)
train=np.array([lkst],dtype=int)
labels = np.array([lkst],dtype=int)
# self.spisok3.append(lkst)
train = np.array([lkst], dtype=int)
labels = np.array([lkst], dtype=int)
self.model.fit(train, labels)
self.textbrowser.append("Модель натренирована на рисунке "+str(v))
#print(len(self.spisok3))
self.textbrowser.append("Модель натренирована на рисунке " + str(v))
# print(len(self.spisok3))
self.textbrowser.append("Выявлены контурные точки на тестовых изображениях!")
#s = keyPoint.size
#print(x,y,s)
# s = keyPoint.size
# print(x,y,s)
self.btn1.setVisible(False)
self.btn2.setVisible(True)
def form_les_and_train(self):
#print(self.spisok3)
# print(self.spisok3)
for v in range(len(self.spisok2)):
lk=list()
lkst = list()
img = cv2.imread(str(self.spisok2[v]))
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp = sift.detect(gray,None)
kp = sift.detect(gray, None)
for keyPoint in kp:
#self.spisok3.append(keyPoint.pt[0])
#self.spisok3.append(keyPoint.pt[1])
#print(keyPoint.pt[0])
#print(keyPoint.pt[1])
# self.spisok3.append(keyPoint.pt[0])
# self.spisok3.append(keyPoint.pt[1])
# print(keyPoint.pt[0])
# print(keyPoint.pt[1])
lkst.append(keyPoint.pt[0])
lkst.append(keyPoint.pt[1])
train =np.array([lkst],dtype=int)
train = np.array([lkst], dtype=int)
self.model.predict(train)
#self.model.
# self.model.
print("RED")
#train = np.array([self.spisok3],dtype=int)
#labels = np.array([self.spisok3],dtype=int)
#model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
#model.fit(train, labels)
#tree = DecisionTreeClassifier()
#tree.fit(self.spisok3, self.spisok3)
#accuracy = accuracy_score(len(self.spisok3), len(self.spisok3))
#print('Model Accuracy:',accuracy)
# train = np.array([self.spisok3],dtype=int)
# labels = np.array([self.spisok3],dtype=int)
# model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
# model.fit(train, labels)
# tree = DecisionTreeClassifier()
# tree.fit(self.spisok3, self.spisok3)
# accuracy = accuracy_score(len(self.spisok3), len(self.spisok3))
# print('Model Accuracy:',accuracy)
def closeEvent(self, event):
close = QMessageBox.question(self,"Выход","Вы хотите завершить работу?",QMessageBox.Yes | QMessageBox.No)
close = QMessageBox.question(self, "Выход", "Вы хотите завершить работу?", QMessageBox.Yes | QMessageBox.No)
if close == QMessageBox.Yes:
event.accept()
else:
event.ignore()
if __name__ == '__main__':
app = QApplication(sys.argv)
win = Example()
sys.exit(app.exec_())
sys.exit(app.exec_())