214 lines
8.3 KiB
Python
214 lines
8.3 KiB
Python
#import numpy as np
|
||
#import cv2
|
||
#img = cv2.imread("D:\MACH\LAB_4\crocodile\image_0001.jpg")
|
||
#gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||
#sift = cv2.SIFT_create()
|
||
#kp = sift.detect(gray,None)
|
||
#img=cv2.drawKeypoints(gray,kp,img)
|
||
#cv2.imshow("R",img)
|
||
#cv2.waitKey(0)
|
||
#cv2.destroyAllWindows()
|
||
import sys
|
||
import cv2
|
||
import numpy as np
|
||
import random
|
||
import math
|
||
from sklearn.ensemble import RandomForestClassifier
|
||
from sklearn.metrics import accuracy_score
|
||
from PyQt5.QtGui import QImage, QPixmap
|
||
from PyQt5.QtWidgets import (QWidget, QApplication, QLabel, QVBoxLayout, QHBoxLayout, QPushButton,
|
||
QFileDialog,QComboBox,QMessageBox,QTextBrowser)
|
||
from PyQt5.QtCore import Qt
|
||
class Example(QWidget):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.image = None
|
||
self.textbrowser = QTextBrowser()
|
||
self.initUI()
|
||
|
||
def initUI(self):
|
||
|
||
self.btn_open = QPushButton('Изображения folder1')
|
||
self.btn_open.clicked.connect(self.openImages1)
|
||
|
||
self.btn_open1 = QPushButton('Изображения folder2')
|
||
self.btn_open1.clicked.connect(self.openImages2)
|
||
|
||
|
||
self.btn_ = QPushButton('Обучить и создать матрицы')
|
||
self.btn_.clicked.connect(self.matrix_and_train)
|
||
|
||
|
||
self.btn1 = QPushButton('Детектировать тестовые изображения')
|
||
self.btn1.clicked.connect(self.detect_image)
|
||
|
||
self.btn2 = QPushButton('Сформировать лес и натренировать полученную модель')
|
||
self.btn2.clicked.connect(self.form_les_and_train)
|
||
|
||
self.btn_.setVisible(False)
|
||
self.btn1.setVisible(False)
|
||
self.btn2.setVisible(False)
|
||
|
||
|
||
top_bar = QHBoxLayout()
|
||
top_bar.addWidget(self.btn_open)
|
||
top_bar.addWidget(self.btn_open1)
|
||
top_bar.addWidget(self.btn_)
|
||
top_bar.addWidget(self.btn1)
|
||
top_bar.addWidget(self.btn2)
|
||
root = QVBoxLayout(self)
|
||
root.addLayout(top_bar)
|
||
root.addWidget(self.textbrowser)
|
||
|
||
self.spisok=list()
|
||
self.spisok2=list()
|
||
self.spisok3=list()
|
||
|
||
|
||
self.train=list()
|
||
self.matrix=list()
|
||
self.resize(540, 574)
|
||
self.setWindowTitle('ST_4')
|
||
self.show()
|
||
|
||
def openImages1(self):
|
||
filenames1 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
|
||
lk=filenames1[0]
|
||
self.erroropened(lk,"1")
|
||
self.mass(lk,1)
|
||
lk.clear()
|
||
|
||
|
||
def openImages2(self):
|
||
filenames2 = QFileDialog.getOpenFileNames(None, 'Открыть изображения', '.', 'Image Files (*.png *.jpg *.jpeg *.bmp)')
|
||
lk=filenames2[0]
|
||
self.erroropened(lk,"2")
|
||
self.mass(lk,2)
|
||
lk.clear()
|
||
|
||
def erroropened(self,s,s1):
|
||
if len(s)!=0:
|
||
q=QMessageBox.information(self,"Информация","Изображения из "+s1+" папки получены!")
|
||
else:
|
||
q=QMessageBox.information(self,"Информация","Вы не выбрали изображения!")
|
||
|
||
|
||
def mass(self,p,s1):
|
||
if s1==1:
|
||
self.spisok3.clear()
|
||
for v in range(len(p)):
|
||
self.spisok.append(str(p[v]))
|
||
self.spisok3.append(str(p[v])+"SKT")
|
||
self.appendos("Тестовый набор картинок",self.spisok)
|
||
if s1==2:
|
||
for v in range(len(p)):
|
||
self.spisok2.append(str(p[v]))
|
||
self.spisok3.append(str(p[v])+"NO")
|
||
self.spisok3=list(set(self.spisok3))
|
||
self.appendos("Набор картинок для тренировки",self.spisok2)
|
||
self.btn_open.setVisible(False)
|
||
self.btn_open1.setVisible(False)
|
||
self.btn_.setVisible(True)
|
||
q=QMessageBox.information(self,"Информация","Количество изображений тестовой категории: "+str(len(self.spisok))+"\nКоличество изображений основной категории: "+str(len(self.spisok2))+"\nОбщее количество изображений: "+str(int(len(self.spisok)+int(len(self.spisok2)))))
|
||
|
||
def matrix_and_train(self):
|
||
for v in range(len(self.spisok3)):
|
||
s=str(self.spisok3[v])
|
||
if s.endswith("SKT"):
|
||
self.train.append(round(float(0.5),1))
|
||
self.matrix.append(round(float(1.0),1))
|
||
if s.endswith("NO"):
|
||
q=round(float(random.uniform(1.0,3.0)),1)
|
||
self.train.append(q)
|
||
self.matrix.append(round(float(-1.0),1))
|
||
|
||
self.appendos("Ваши тренировочные данные",self.train)
|
||
self.appendos("Ваша матрица",self.matrix)
|
||
train=np.array([self.train],dtype=int)
|
||
labels = np.array(self.matrix,dtype=int)
|
||
self.svm = cv2.ml.SVM_create()
|
||
self.svm.train(train, cv2.ml.COL_SAMPLE, labels)
|
||
self.svm.save("1.yml")
|
||
self.textbrowser.append("Модель сохранена!")
|
||
close = QMessageBox.question(self,"Поздравляем!","Ваша модель натренирована!",QMessageBox.Yes | QMessageBox.No)
|
||
if close == QMessageBox.Yes:
|
||
pass
|
||
self.btn_.setVisible(False)
|
||
self.btn1.setVisible(True)
|
||
|
||
def appendos(self,s1,s2):
|
||
self.textbrowser.append(s1)
|
||
for v in range(len(s2)):
|
||
self.textbrowser.append(str(s2[v]))
|
||
|
||
def detect_image(self):
|
||
self.model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
|
||
self.spisok3.clear()
|
||
for v in range(len(self.spisok)):
|
||
lkst=list()
|
||
img = cv2.imread(str(self.spisok[v]))
|
||
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||
sift = cv2.SIFT_create()
|
||
kp = sift.detect(gray,None)
|
||
for keyPoint in kp:
|
||
#self.spisok3.append(keyPoint.pt[0])
|
||
#self.spisok3.append(keyPoint.pt[1])
|
||
#print(keyPoint.pt[0])
|
||
#print(keyPoint.pt[1])
|
||
lkst.append(keyPoint.pt[0])
|
||
lkst.append(keyPoint.pt[1])
|
||
|
||
#self.spisok3.append(lkst)
|
||
train=np.array([lkst],dtype=int)
|
||
labels = np.array([lkst],dtype=int)
|
||
self.model.fit(train, labels)
|
||
self.textbrowser.append("Модель натренирована на рисунке "+str(v))
|
||
#print(len(self.spisok3))
|
||
self.textbrowser.append("Выявлены контурные точки на тестовых изображениях!")
|
||
|
||
#s = keyPoint.size
|
||
#print(x,y,s)
|
||
self.btn1.setVisible(False)
|
||
self.btn2.setVisible(True)
|
||
|
||
def form_les_and_train(self):
|
||
|
||
#print(self.spisok3)
|
||
for v in range(len(self.spisok2)):
|
||
lk=list()
|
||
img = cv2.imread(str(self.spisok2[v]))
|
||
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||
sift = cv2.SIFT_create()
|
||
kp = sift.detect(gray,None)
|
||
for keyPoint in kp:
|
||
#self.spisok3.append(keyPoint.pt[0])
|
||
#self.spisok3.append(keyPoint.pt[1])
|
||
#print(keyPoint.pt[0])
|
||
#print(keyPoint.pt[1])
|
||
lkst.append(keyPoint.pt[0])
|
||
lkst.append(keyPoint.pt[1])
|
||
train =np.array([lkst],dtype=int)
|
||
self.model.predict(train)
|
||
#self.model.
|
||
print("RED")
|
||
#train = np.array([self.spisok3],dtype=int)
|
||
#labels = np.array([self.spisok3],dtype=int)
|
||
#model = RandomForestClassifier(n_estimators=100,bootstrap = True,max_features = 'sqrt')
|
||
#model.fit(train, labels)
|
||
#tree = DecisionTreeClassifier()
|
||
#tree.fit(self.spisok3, self.spisok3)
|
||
#accuracy = accuracy_score(len(self.spisok3), len(self.spisok3))
|
||
#print('Model Accuracy:',accuracy)
|
||
|
||
|
||
def closeEvent(self, event):
|
||
close = QMessageBox.question(self,"Выход","Вы хотите завершить работу?",QMessageBox.Yes | QMessageBox.No)
|
||
if close == QMessageBox.Yes:
|
||
event.accept()
|
||
else:
|
||
event.ignore()
|
||
|
||
if __name__ == '__main__':
|
||
app = QApplication(sys.argv)
|
||
win = Example()
|
||
sys.exit(app.exec_()) |