This repository has been archived on 2022-12-09. You can view files and clone it, but cannot push or open issues or pull requests.
2022-11-22 20:51:20 +03:00

88 lines
2.3 KiB
Python

import os
import sys
import cv2
import numpy as np
from matplotlib import pyplot as plt
def main():
lstone=list()
lsttwo=list()
image1 = cv2.imread("D:\\MACH\\MACH\\LAB_2\\image0.jpg")
image2=image1
image3=image1
image4=image1
image5=image1
image6=image1
image7=image1
image2=erode_cv(image2,11)
image3=dilate_cv(image3,11)
image4=median_cv(image4,5)
image5=erode_ipp(image5,14)
image6=dilate_ipp(image6,14)
image7=median_ipp(image7,7)
cv2.imshow("Image_load",image1)
cv2.imshow("erode_cv",image2)
cv2.imshow("dilate_cv",image3)
cv2.imshow("median_cv",image4)
cv2.imshow("erode_ipp",image5)
cv2.imshow("dilate_ipp",image6)
cv2.imshow("median_ipp",image7)
cv2.waitKey(0)
lstone=sravit_metod(image2)
lsttwo=sravit_metod(image5)
lsttree=lsttwo[len(lstone):]
print("Erode")
print("Количество отличий : "+str(len(lsttwo)-len(lstone))+" \nРазница")
print(lsttree)
lstone=sravit_metod(image3)
lsttwo=sravit_metod(image5)
lsttree=lstone[len(lsttwo):]
print("Dilate")
print("Количество отличий : "+str(len(lstone)-len(lsttwo))+" \nРазница")
print(lsttree)
lstone=sravit_metod(image4)
lsttwo=sravit_metod(image7)
lsttree=lstone[len(lsttwo):]
print("Median")
print("Количество отличий : "+str(len(lstone)-len(lsttwo))+" \nРазница")
print(lsttree)
def erode_cv(s1,s2):
s1 = cv2.erode(s1, np.ones((s2, s2)))
return s1
def dilate_cv(s1,s2):
s1 = cv2.dilate(s1, np.ones((s2, s2)))
return s1
def median_cv(s1,s2):
s1 = cv2.medianBlur(s1,s2)
return s1
def erode_ipp(s1,s2):
s1 = cv2.erode(s1, np.ones((s2, s2)))
return s1
def dilate_ipp(s1,s2):
s1 = cv2.dilate(s1, np.ones((s2, s2)))
return s1
def median_ipp(s1,s2):
s1 = cv2.medianBlur(s1,s2)
return s1
def sravit_metod(s1):
cv2.imwrite("im1.jpg",s1)
s1 = cv2.imread("im1.jpg", 0)
th, threshed = cv2.threshold(s1, 100, 255,cv2.THRESH_BINARY_INV|cv2.THRESH_OTSU)
cnts = cv2.findContours(threshed, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[-2]
t1= 3
t2 = 20
xcnts = []
for cnt in cnts:
if t1<cv2.contourArea(cnt) <t2:
xcnts.append(cnt)
os.remove("im1.jpg")
return xcnts
if __name__=="__main__":
main()